Solutions - Final Exam

(April 21st @ 7:00 pm)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (12 PTS)

• Complete the timing diagram of the following circuit. $G = G_3 G_2 G_1 G_0 = 0110$, $Q = Q_3 Q_2 Q_1 Q_0$

PROBLEM 2 (10 PTS)

• Given the following circuit, complete the timing diagram. The LUT 6-to-6 implements the following function: OLUT = [sqrt(ILUT)], where ILUT is a 6-bit unsigned number. For example $ILUT = 41 (101001_2) \rightarrow OLUT = [sqrt(41)] = 7 (000111_2)$

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: Digital Logic Design

PROBLEM 3 (21 PTS)

• Two-pulse Detector: The timing diagram shows the behavior of the circuit. The FSM generates z = 1 when it detects two pulses. Note how in this design, the output z is 1 as soon as the second $1 \rightarrow 0$ transition is detected. Once the two pulses are detected, the FSM looks for a new pair of pulses. Assumption: For the circuit to detect a '1' or a '0' on x, this value needs to happen when a rising edge occurs. Draw the State Diagram (any representation) of the given FSM (10 pts).

clock

resetn

x

resetn

The following FSM has 4 states, one input *w* and one output *z*. (11 pts)
 ✓ The excitation equations are given by:

 $Q_1(t+1) \leftarrow Q_0(t)$

$$Q_0(t+1) \leftarrow Q_1(t) \oplus \bar{W}$$

- ✓ The output equation is given by: $z = Q_1(t) \oplus Q_0(t) \oplus w$
- ✓ Provide the State Diagram (any representation) and the Excitation Table.
- ✓ Sketch the Finite State Machine circuit.

PRESENT STATE NEXTSTATE

				PRESENT	NEXT	
w $Q_1Q_0(t)$	Q ₁ Q ₀ (t+1)	Z	 W	STATE	STATE	Z
0 0 0	0 1	0	0	S0	S1	0
0 0 1	1 1	1	0	S1	S3	1
0 1 0	0 0	1	0	S2	S0	1
0 1 1	10	0	0	s3	S2	0
1 0 0	0 0	1	1	S0	S0	1
1 0 1	10	0	1	S1	S2	0
1 1 0	01	0	1	S2	S1	0
1 1 1	11	1	1	S3	S3	1

State Assignn	nent.
S0: Q=00	S1: Q=01
S2: Q=10	S3: Q=11

PROBLEM 4 (11 PTS)

• Sequence detector: This FSM has to generate z = 1 when it detects the sequence 01011 or 11100. Once the sequence is detected, the circuit looks for a new sequence. Note that once we start detecting a sequence, we prioritize the sequence that we have over the other (e.g.: last sequence inside a dotted red rectangle is not considered).

 \checkmark Draw the State Diagram (any representation) and provide the State Table of this circuit with input *x* and output *z*. Is this a <u>Mealy</u> or a <u>Moore</u> machine? Why?

* Excitation Table shown only for reference.

				NEW		PRESENT STATE	NEXTSTATE	
State Assignme	ent:	х	STATE	STATE	Z	$x Q_3 Q_2 Q_1 Q_0 (t)$	$Q_{3}Q_{2}Q_{1}Q_{0}(t+1)$	Z
S1: Q=0000	S2: Q=0001	0	S1	S2	0	0 0 0 0 0		0
S3: Q=0010	S4: Q=0011	Õ	s2	52	Õ	0 0 0 0 1		0
S5: Q=0100	S6: Q=0101	0	S3	S4	0	0 0 0 1 0	0 0 1 1	0
S7: O=0110	S8: O=0111	0	S4	S2	0	0 0 0 1 1		0
S9 · O=1000	~ ~	0	S5	S4	0	0 0 1 0 0	0 0 1 1	0
55. Q 1000		0	S6	S2	0	0 0 1 0 1		Õ
		0	S7	S2	0	0 0 1 1 0	0 0 0 1	0
		0	S8	S9	0	0 0 1 1 1	1000	0
		0	S9	S1	1	0 1 0 0 0	0 0 0 0	1
		1	S1	S6	0	0 1 0 0 1	хххх	Х
		1	S2	S3	0	0 1 0 1 0	хххх	Х
		1	S3	S7	0	0 1 0 1 1	хххх	Х
		1	S4	S5	0	0 1 1 0 0	ХХХХ	Х
		1	S5	S1	1	0 1 1 0 1	ХХХХ	Х
		1	S6	S7	0	0 1 1 1 0	ХХХХ	Х
		1	S7	S8	0	0 1 1 1 1	ХХХХ	Х
		1	S8	S8	0	1 0 0 0 0	0101	0
		1	S9	S3	0	1 0 0 0 1	0010	0
				•		1 0 0 1 0	0 1 1 0	0
						1 0 0 1 1	0 1 0 0	0
						1 0 1 0 0	0 0 0 0	1
						1 0 1 0 1	0 1 1 0	0
						1 0 1 1 0	0 1 1 1	0
						1 0 1 1 1	0 1 1 1	0

0

Х

Х

Х

Х

Х

Х

Х

0 0 1 0

хххх

хххх

хххх

хххх

хххх

хххх

ХХХХ

1000

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

1

1

1

1

1

1

1

1

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: Digital Logic Design

PROBLEM 5 (28 PTS)

- Draw the State Diagram (in ASM form) of the FSM whose VHDL description in shown below. (5 pts)
- Complete the Timing Diagram. (7 pts)
- Provide the State Table and the Excitation Table. Is it a <u>Mealy</u> or a <u>Moore</u> FSM? (6 pts).
- Provide the excitation equations and the Boolean output equations (simplify your circuit: K-maps or Quine-McCluskey).
- Sketch the circuit. (3 pts)

• State Table and Excitation Table:

.

PRESENT r p STATE	NEXT STATE	X W Z	PRESENT STATE r p Q_1Q_0 (t)	NEXTSTATE Q1Q0 (t+1) x w z
0 0 S1 0 0 S2 0 0 S3 0 1 S1 0 1 S2 0 1 S3 1 0 S1 1 0 S2 1 0 S3 1 1 S1 1 1 S1 1 1 S2 1 1 S3 State Assignment:	S1 S3 S2 S3 S1 S3 S2 S3 S2 S2 S1 S3	0 0 1 1 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 1 1 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 X X X X X 1 0 0 0 0 0 0 1 0 0 0 X X X X X X 0 1 0 0 0 0 X X X X X X 0 1 0 0 0 0 0 0 0 0 0 0 0
S1: Q=00 S2: Q=01 S3: Q=10			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0 0 0 0 X X X X X

This is a Mealy FSM. The outputs x, w, z depend on the input as well as on the present state.

Minimization, Excitation equations (including Boolean output equations), and circuit implementation:

	$Q_1(t+1)$ r	$Q_0(t+1)$ rp								
$Q_1(t+1) \leftarrow \bar{r}p\overline{Q_0(t)} + pQ_1(t) + \bar{p}Q_0(t)$	0,0,	00	01	11	10	0,0	00	01	11	10
$Q_{0}(t+1) \leftarrow rQ_{1}(t) Q_{0}(t) + \bar{p}Q_{1}(t)$ $x = \bar{p}Q_{1}(t) + \bar{r}Q_{0}(t)$ $x = \bar{p}Q_{1}(t) + \bar{r}Q_{0}(t)$	00	0	1	0	0	00	0	0	1	1
$w = p Q_0(t)$ $z = \bar{r} \bar{p} Q_1(t) \overline{Q_0(t)}$	01	1	0	0	1	01	0	0	0	0
	11	x	Х	х	Х	11	Х	Х	Х	х
	10	0	1	1	0	10	1	0	0	1
			1 1			-				

x rI	р 00	01	<i>x</i> 11	10	w ri	р 00	01	11	10		р 00	01	11	10
00	0	0	0	0	00	0	0	0	0	00	1	0	0	0
01	1	1	0	0	01	1	0	0	1	01	0	0	0	0
11	Х	х	х	Х	- 11	х	Х	Х	Х	11	Х	Х	Х	Х
10	1	0	0	1	10	0	0	0	0	10	0	0	0	0

PROBLEM 6 (18 PTS)

- "Counting 0's" Circuit: It counts the number of bits in register *A* that has the value of '0'.
 - The digital system is depicted below: FSM + Datapath. Example: For n = 8: if A = 0.0110010, then C = 0.0110010.
 - ✓ m-bit counter: If E = sclr = 1, the count is initialized to zero. If E = 1, sclr = 0, the count is incremented by 1.
 - ✓ Parallel access shift register: If E = 1, $s_l = 1 \rightarrow \text{Load}$. If E = 1, $s_l = 0 \rightarrow \text{Shift}$.
- Complete the timing diagram where n = 8, m = 4. A is represented in hexadecimal format, while C is in binary format.

